منابع مشابه
The Diophantine Equation x4 ± y4 = iz2 in Gaussian Integers
The Diophantine equation x4 ± y4 = z2, where x, y and z are integers was studied by Fermat, who proved that there exist no nontrivial solutions. Fermat proved this using the infinite descent method, proving that if a solution can be found, then there exists a smaller solution (see for example [1], Proposition 6.5.3). This was the first particular case proven of Fermat’s Last Theorem (which was ...
متن کاملSolving Linear Diophantine Equations
An overview of a family of methods for nding the minimal solutions to a single linear Diophantine equation over the natural numbers is given. Most of the formal details were dropped, some illustrations that might give some intuition on the methods being presented instead.
متن کاملExplicit Methods for Solving Diophantine Equations
We give a survey of some classical and modern methods for solving Diophantine equations.
متن کاملFast Methods for Solving Linear Diophantine Equations
We present some recent results from our research on methods for finding the minimal solutions to linear Diophantine equations over the naturals. We give an overview of a family of methods we developed and describe two of them, called Slopes algorithm and Rectangles algorithm. From empirical evidence obtained by directly comparing our methods with others, and which is partly presented here, we a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 2005
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa117-3-1